ີ wirelessSEISMIC

Wireless Progresses!

Mick Lambert President & C.O.O. Wireless Seismic Inc.

Finding Petroleum *"Total" 3D seismic onshore – a disruptive transition!* Nov. 9, 2011

Wireless Networks

- Easy to use by almost everyone
- Work almost everywhere
- Their capacity is consistently increasing e.g. streaming video

wireless SEI SMIC

Cabled Seismic Networks

- Difficult to transport
- Difficult to deploy
- Labor intensive
- HSE-challenged

- Difficult to maintain a single cable break can be very disruptive
- Costly to repair

Cabled Seismic Networks

- Complexity has become a barrier to larger channel-count deployments
- Do not function well in some (e.g. rough terrain) environments
- Are not acceptable in some (e.g. urban) environments

Conclusion (obvious) – we need a better solution

wireless SEI SMIC

Cable-less vs. Cabled Systems

Two primary types of cable-less systems

- Nodal
- Wireless

Issues with nodal systems...

1) You must physically collect the seismic data

2) Seismic data needs transcription into SEG formats

3) Limited quality control during acquisition

4) Cannot view all the seismic data while recording

Conclusion – nodes overcome the major limitation of cabled systems – but introduce several new limitations

RAU FIELD

What about wireless?!

The challenge: Introduce wireless technology to seismic crews but make the radio networks robust, self-sustaining and transparent to the user

Wireless Seismic Architecture: In-lines

- Each Wireless Remote Unit (WRU) acts as seismic acquisition station & radio relay
- Transmits long distances one short hop at a time

Wireless Seismic Architecture: Cross Lines

- Base Station Units (BSU's) act as collection points for the seismic data
- Backhaul radios transmit the collected data back to the Central
- Commercial 5.8 GHz mesh radio
- Mast is man-deployable in 10 minutes

Wireless Seismic Architecture – the System

- The RT 1000
 - a drop-in replacement for a cabled seismic system
- A complete system consists of:
 - Wireless Remote Units (WRU's)
 - Backhaul with BSU's that collect the data from the in-lines
 - Central recording system
- Data is delivered to the Central in real time:
 - Real time noise monitor
 - Continuous QC
 - No physical collection or transcription of seismic data
 - High capacity radio network

wireless SEI SMIC

Wireless Seismic Systems

- Why has real-time wireless technology not yet fully penetrated the seismic land acquisition market?
- Technical and operational challenges:
 - Prior limitations in radio technology
 - Power management (battery life)
 - Radio complexity
- Wireless Seismic has been focused for several years on overcoming these technical and operational challenges

Technical and Operational Challenges

- Prior limitations in radio technology
 - Wireless Seismic has spent 5 years designing, testing and deploying radio-based seismic systems

Conclusion – based on our experiences, current radio technology, properly engineered, has advanced to a point where a radio-based seismic system is commercially viable

Battery Life - Survey Results

The Wireless Seismic recording system runs 2 hot-swap batteries: Please rate your opinion of each of the following battery-life options, assuming that you were operating on a 12 hour shift schedule:

Conclusion - Optimum battery life is between 14 and 21 days

Technical and Operational Challenges

- Power Management primary criteria
 - The system electronics must minimize power consumption
 - *Meticulous engineering design has dramatically reduced power consumption*
 - E.g. RT 1000 clock discipline is managed via radio telemetry and not via GPS on the WRU
 - The batteries must maximize power availability
 - 2 x lithium-ion batteries with high power-density
 - Battery life must be in the range of 14 to 21 days
 - RT 1000 battery life (2 batteries) is typically between **15 and 25 days**
 - Higher capacity batteries will extend life to ~40 days
 - -- Batteries and battery chargers need to be lightweight and portable
 - RT 1000 batteries have on-board charging circuitry
 - Result simple and inexpensive battery chargers

Conclusion – a wireless-based system can now be deployed that meets the market requirements for efficient and effective power management

wireless SEI SMIC

Technical and Operational Challenges

- Radio Complexity Wireless Seismic has developed a comprehensive suite of tools and technologies to minimize radio complexity
- The following slides provide details about these tools and technologies – the end result being a user-friendly and self-sustaining radio telemetry system.

Automated connection to wireless array

Tilt the WRU to power up the unit, then set it on the ground

Performs self tests, checks location, and connects to the wireless array

Reducing Radio Complexity

• Automated line formation

Reducing Radio Complexity

• WRU's and BSU's automatically transmit their status back to Central

Telemetry Skip Healing

Automated Power Levelling

Automated Transmission Retries

Reducing Radio Complexity

• Comprehensive suite of tools to view and analyze radio links and performance

and Income	et Tanta																	Served Example 1404														
7 = 1	h 🗂 🗌																															
- Fauly	Cp-Master	Tane Make	Terr Datas	Descript Table	Serut.	main L'M	Lout	Bundt	Let	144m	Nor Les 1	See THE	Constant of	Teller	Py To De P	-	Data Dance (25)	Tares Dature 24	Dany Comme 12	Carto	Cast Carriel	C Cred Line	me-									
1.000	No.	Receil	Quanded .	Uninclud	50000140	192	395	121	25.6285718	-95/3942139		-182	-91	7		57	9£.	0	9	290	8	8										
whi	-	Passed	Unined .	Uninted	100001180	182	281	118	254(2294)	-91.2915941		-45	-16	3	7	-	150	10		87	18 ·	-										
1 442	Sec.	Apresi	Uninted	[downand	10000296	284	301	128	28.6282548	-053001217		-38	-48	7		62	306			300												
whi			University .	Longendert	10000108	1981	381	118	254030078	-01/1012000		-11	42.5	7	· T	43	300	100	-	87		83										
1000	Sec.	(fageal)	Uninted	Internet	100001133	192	HH.	114	254305(24	-25.3018000		-40	-87	1.	. F	61	100	100		205	100	1280										
10.02	- Internal	Passed	Gelenant	Uninted	10000110	100	301	152	294055277	-85.3040466		-38 -	-11	3		-	HOE -	100		81	94											
and .	No.		Line out	Longer and	10000113	1 100	301	120	pastores	-01.10112711		200	41	7			15	10	18	100	99	10										
whi.	- Internet	Pened	Linested 1	Sectores	10000274	282	285	128	284000127	-11.364221		-41	-18.07	3	7	58.1	-	15.	95	388	100	-										
1 was	and the second		Unimited	Internet	100001215	100	1211	111	28.61.650	-05:3912502			-42	9		-	17	28	28.	10	100	10										
NR.	a second	Parent	Unterded	(internet)	30000134	100	301	LIF	294255788	-05.7823888		-38	-16-	3		83.	100		2	-87												
anu -	The second	Passed	Line out	Loosent 7	30000110	6.188	101	109	294(0286)	453462411		-43	-88	7	T	81.	100	90	98	100	-											
and a	a second	Asset	Untertest	Uninted	10000143	192	10.	118	294292701	-01.1425.006		-50	-14	4	1.7.	-																
and a	-	Passal	Uninted	Uninted	100001340	100	101	101	294005078	-05.3440006		-11	1	9		54		40	94													
inter		Penalt	University 7	Unternet	100001.80	100	221	129.	29.4282.846	-	10	-41	45	2	+	42	100	4	(a)			1										

Urban Seismic – Using repeaters

- Repeaters are just WRU's that are inserted between 2 surveyed WRU's
 - act as a radio relay to improve radio communications in challenging areas
 - allow lines to be "snaked" as needed

Reducing Radio Complexity

- Automated data flow control
 - Suspends WRU data transmission in the affected area until the bottleneck is overcome
 - Data held in local memory
- Backhaul reliability layer
 - automated recovery of data lost over the back haul network
 - data recovered directly from BSU's
- Automated queuing and acknowledgements of commands
 - Guarantees commands get to all WRU's
- Automated data recollection
 - "mops up" any remaining missing data after all of the other automated systems have run their course

Conclusion

 The RT 1000 system delivers robust, reliable and (most importantly) self-sustaining RF networks

2011 - RT 1000 deployments in varied terrain

Urban Seismic deployment

Discontinuous infill and overlay patches Total spread distance >7 miles

Road crossings and traffic were not a problem...

Backhaul masts on streets...

...and in back gardens...

Standalone Urban Deployment

Successful standalone acquisition using Vibrator source and >1,000 total channels on the ground

Summary

- The limitations of cabled systems are well understood and are further exacerbated by ever-increasing channel-count deployments
- Nodal systems overcome many of the limitations of cabled systems but introduce other limitations that cabled systems don't have
- Radio-based systems offer the best potential for a cable-free world but several important challenges have to be overcome
- One key challenge the radio networks must not substitute RF limitations for the limitations of cables
- Wireless Seismic has introduced a real-time wireless system with RF networks that have been developed to be efficient, reliable, robust and self-sustaining
- The RT 1000 system has been deployed in a variety of environments and has demonstrated that a real-time wireless system is now commercially competitive
- The RT 1000 is available for delivery now
- The major focus of Wireless Seismic moving forward, is to scale up the RT 1000 technology and deliver large channel-count systems in the near future

More information

www.wirelessSEISMIC.com Main +1 832-532-5080 info@wirelessseismic.com

Mick Lambert mlambert@wirelessseismic.com

